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As more clinically relevant cancer genes are identified, comprehensive diagnostic approaches are 

needed to match patients to therapies, raising the challenge of optimization and analytical 

validation of assays that interrogate millions of bases of cancer genomes altered by multiple 

mechanisms. Here we describe a test based on massively parallel DNA sequencing to characterize 

base substitutions, short insertions and deletions (indels), copy number alterations and selected 

fusions across 287 cancer-related genes from routine formalin-fixed and paraffin-embedded 

(FFPE) clinical specimens. We implemented a practical validation strategy with reference samples 

of pooled cell lines that model key determinants of accuracy, including mutant allele frequency, 

indel length and amplitude of copy change. Test sensitivity achieved was 95–99% across alteration 

types, with high specificity (positive predictive value >99%). We confirmed accuracy using 249 

FFPE cancer specimens characterized by established assays. Application of the test to 2,221 

clinical cases revealed clinically actionable alterations in 76% of tumors, three times the number 

of actionable alterations detected by current diagnostic tests.

Systemic cancer treatment is undergoing a fundamental change, moving away from a 

paradigm in which histopathologically defined disease is treated primarily with cytotoxic 

chemotherapy, toward the use of molecularly targeted drugs prescribed to selected subsets of 

patients across multiple tumor types. Targeted therapies promise to be both safer and more 

efficacious as demonstrated by the success of trastuzumab (Herceptin) in ERBB2 (also 

known as HER2)-amplified breast cancer, imatinib (Gleevec) in Philadelphia chromosome– 

positive chronic myelogenous leukemia, erlotinib (Tarceva) in EGFR-mutated non-small cell 

lung cancer and vemurafenib (Zelboraf) in BRAF-mutant melanoma1. Informed by rapid 

genomic discovery2–5, there are now hundreds of compounds in clinical development 

targeting more than 100 genomic alterations in cancer-related genes representing multiple 

cellular pathways6,7. More personalized cancer therapy will be achieved by addressing the 

specific molecular drivers of a patient’s disease8.

Essential to the successful delivery of personalized cancer therapy are diagnostic tests that 

comprehensively characterize the genomic alterations occurring within individual tumors. 

These tests enable patients to be matched with available targeted therapies, either approved 

or in clinical trials. Several technologies, including PCR, Sanger sequencing, mass 

spectrometric genotyping, fluorescence in situ hybridization (FISH) and 

immunohistochemistry (IHC)9–13, are currently in use for the clinical assessment of a 

limited number of oncogenic markers. Owing to technical limitations and the small amount 

of material obtained from biopsies, none of these methodologies can be scaled to address the 

increasing number and variety of therapeutically relevant genomic alterations that occur 

across hundreds of cancer-related genes, both in primary disease and in cases of acquired 

resistance to therapy14–18.

Massively parallel (or ‘next-generation’) DNA sequencing, successfully applied in the 

research setting to elucidate the complexity of the cancer genome, is thus becoming an 

attractive clinical diagnostic technology because it can accurately detect most genomic 

alterations in all therapeutically relevant cancer genes in a single assay19–21. However, the 

adoption of this technology in a clinical context as a routine test to support the selection of 

therapy for cancer patients faces multiple challenges. First, the majority of cancer specimens 
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are FFPE, a process that may damage DNA22, such that robust DNA extraction and 

sequencing library construction protocols must be applied. Second, many samples available 

for testing are small-core needle biopsies, fine-needle aspirations or cell blocks prepared 

from malignant pleural, pericardial or peritoneal effusions, necessitating protocols that 

accommodate limited amounts of tissue and extracted DNA23. Third, whereas selecting 

specimens with high tumor content is feasible in the research setting, accurate profiling in 

clinical specimens must be achieved when the relative proportion of tumor nuclei is low24. 

Thus, uniformly high sequence coverage across all test regions and appropriately designed 

analysis algorithms are required. Finally, because millions of bases within the tumor genome 

are assayed, rigorous analytical approaches for validation are needed to demonstrate the 

readiness of the technology for clinical use.

We have developed and validated a next-generation sequencing (NGS)-based cancer genome 

profiling test that interrogates 4,557 exons of 287 cancer-related genes and have established 

performance benchmarks supporting direct clinical use. We assessed the analytical 

sensitivity, specificity, accuracy and precision across the reportable range of the assay, in line 

with guidelines established by the Next Generation Sequencing: Standardization of Clinical 

Testing work-group25. Relevant sample types were represented, including FFPE. Base 

substitutions, indels, focal gene amplifications and homozygous gene deletions were tested. 

We report our experience with the first 2,221 patient tumor FFPE specimens submitted to 

our Clinical Laboratory Improvement Amendments (CLIA)-certified and College of 

American Pathologists (CAP)-accredited laboratory and provide insights for the successful 

incorporation of NGS into routine oncologic practice, including clinical trials.

RESULTS

NGS-based clinical cancer gene test

We have developed a cancer genome profiling test based on massively parallel DNA 

sequencing (Fig. 1)26,27. Briefly, DNA was extracted from routine FFPE biopsy or surgical 

specimens, 50–200 ng of which underwent whole-genome shotgun library construction and 

hybridization-based capture of 4,557 exons from 287 cancer-related genes and 47 introns 

from 19 genes frequently rearranged in solid tumors (Supplementary Table 1). Using the 

Illumina HiSeq2000 platform, hybrid-capture–selected libraries were sequenced to high 

uniform depth (targeting >500× coverage by non-PCR duplicate read pairs, with >99% of 

exons at coverage >100×). Protocols and reagents were optimized to assure even coverage 

and robust performance for a wide variety of specimens28–30. Sequence data were processed 

using a customized analysis pipeline designed to accurately detect multiple classes of 

genomic alterations: base substitutions, indels, focal gene amplifications, homozygous gene 

deletions and selected gene fusions in routine clinical specimens. All testing was done in a 

CLIA-certified, CAP-accredited laboratory.

Validation approach

In contrast to diagnostic assays for a limited number of genomic sites, analytical validation 

of an NGS-based genomic profiling test assaying ~1.5 Mb of target sequence is a complex 

challenge. A single tumor specimen can harbor multiple types of genomic alterations, at any 
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position in the tested region, at a wide range of mutant allele frequencies (MAF) or copy 

number levels. Reference specimens containing all possible somatic alterations in all cancer-

related genes do not exist. We therefore developed a representative validation approach with 

reference samples created to span the key axes of mutation and specimen variability 

affecting detection performance, allowing the accuracy of the test to be robustly estimated.

To validate the accuracy of base substitution detection, we created pools of normal cell lines 

from the 1000 Genomes Project31, leveraging the abundance and population distribution of 

known germline base- substitution variation to create test specimens that include thousands 

of variants across the targeted exons and span a broad range of MAF (5–100%). Similarly, to 

validate the accuracy of indel detection, we mixed tumor cell lines with known somatic indel 

alterations into variably sized pools to represent both a range of MAF (10–100% and indel 

length (1–40 bp). Because unique sequence coverage, a function of sample quality, is a key 

driver of accuracy for substitutions and indels, in silico down-sampling (the random 

selection of subsets of reads) was carried out to examine performance over a wide coverage 

range (150–500×). For copy number alterations (CNAs), pairs of matched tumor and normal 

cell lines bearing diverse somatic focal gene amplifications and homozygous gene deletions 

were mixed in ratios ranging from low to high tumor content (20–75%). The test was 

applied blinded to all pools and the results compared to expectation based on the 

constituents in each pool. Initial fusion gene validation was described previously30,32, and 

extended in manuscripts in preparation or under review.

To confirm that performance criteria established by cell line validation are representative of 

routine clinical samples, we examined the concordance between NGS test results and the 

results obtained from a variety of current clinical technologies, including Sequenom mass-

spectrometry analysis, gel sizing, FISH and IHC, for a large series of FFPE specimens. 

Finally, we validated test reproducibility by examining mutation calls in replicates of clinical 

FFPE specimens processed independently as components of several process batches and 

control specimens tested repeatedly by inclusion in every process batch.

Taken together, these experiments assessed test performance across a broad range of 

genomic alteration types and tumor specimen properties to support clinical use.

Base substitution detection performance

Base substitution detection was done using a Bayesian method allowing the detection of 

somatic mutations at low MAF across the 1.5 Mb assayed with increased sensitivity for 

mutations at hotspot sites. To validate base substitution detection, we created two pools of 

ten normal cell lines each, containing a total of 2,057 known base substitutions, representing 

a broad range of allele frequencies (Fig. 2a and Supplementary Tables 2 and 3). We 

compared the alterations detected to those expected from base substitutions present in the 

individual cell line constituents. Median exon sequencing coverage of 738× and 580× was 

obtained for the two pools, with >99% of the exons in each pool covered at >250×. Overall 

substitution detection performance was high; >99% of base substitutions expected to be 

present at MAF ≥ 10% were successfully detected (1,036/1,036), as were 99% of 

substitutions at MAF < 10% (1,013/1,021) (Supplementary Table 4). In addition, high 

specificity was maintained with a positive predictive value (PPV, the fraction of substitution 
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calls in the pools traceable to a substitution in a constituent cell line) >99% (2,577/2,579, 

with two false-positive calls at MAF < 5%).

We next assessed the effect of reduced sequence coverage by down-sampling data from each 

of the two pools, targeting median exon coverage from 500× to 150× in intervals of 50× 

(Fig. 2b). As expected, detection sensitivity dropped as coverage decreased, especially for 

substitutions occurring at low MAF (<10%), although high sensitivity was obtained down to 

250× median exon coverage. At 250× median coverage, >99% of base substitutions present 

at MAF ≥ 10% were successfully detected (1,035/1,036), as were 98% of substitutions at 5% 

≤ MAF ≤ 10% (601/614). Furthermore, PPV remained high (>99%) across the full coverage 

range. We observed a high correlation between expected and observed MAFs at tested sites 

(Fig. 2c), highlighting the quantitative nature of an optimized NGS-based test.

To further quantify the impact of sequencing coverage and MAF on base substitution 

detection sensitivity, we generated a smoothed representation of the relationship between 

these variables in our down-sampled data at a given mutated site (in contrast to aggregate 

performance in Fig. 2b) and examined how performance degrades under reduced coverage 

depth (Supplementary Fig. 1). As expected, a marked reduction in sensitivity was observed 

for alterations with MAF < 10% when local coverage falls below 100×, emphasizing the 

importance of high, uniform sequencing coverage across the reportable exon range of the 

assay.

Indel detection performance

To allow discovery of longer events, we detected indels by de novo local assembly using the 

de Bruijn approach. To validate indel detection, we used 28 tumor cell lines containing a 

total of 47 known somatic indel alterations in 22 genes to generate 41 pools of two to ten 

cell lines each (Supplementary Tables 5 and 6), thereby creating a test set of 227 indels 

spanning a wide range of MAF and indel lengths (1–40 bp) (Fig. 2d). An average sequence 

coverage of 667× was obtained across all pools, with >99% of the exons covered at >250×. 

Overall, indel detection was high: 98% (92/94) of indels at MAF ≥ 20% were successfully 

detected, as well as 97% (71/73) of indels at 10% ≤ MAF ≤ 20% and 88% (53/60) of indels 

at 5% ≤ MAF ≤ 10%. Very few false-positive calls were observed, with PPV > 99% 

(875/878, all false-positive calls occurred at MAF < 20%).

As was the case for base substitutions, indel detection sensitivity decreased with reduced 

coverage depth, especially at low MAF, but remained high above ~250× unique median 

coverage. Ninety eight percent (92/94) of indels at MAF > 20% and 92% (67/73) of indels at 

10% ≤ MAF ≤ 20% were successfully detected (Fig. 2e and Supplementary Table 7). 

Similarly to base substitutions, the correlation between measured and expected MAF for 

indels was high (Fig. 2f). Likewise, the relationships between sensitivity, MAF and local 

sequence coverage depth were maintained (Supplementary Fig. 1b).

Comparison with other variant-calling approaches

We evaluated the contribution of our customized variant-calling pipeline to the performance 

observed in the cell line models above, focusing on two key distinguishing characteristics of 

our approach. First, we apply statistical models that allow for the identification of a mutation 
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at low MAF. Second, we incorporate local assembly to allow for the reconstruction and 

detection of longer indel events. We therefore selected publicly available algorithms that 

were similar overall to our approach, with the key exception of the two features above. To 

assess the benefit of modeling low-frequency variants, we compared the substitution 

detection performance of our pipeline on the two normal cell line pools to calls produced by 

SAMtools33, a robust and widely used software package for sequence data manipulation and 

germline genotype analysis. To measure the effect of local assembly, we compared our indel 

results on both individual cancer cell lines and cell line pools to those produced by Dindel34, 

an advanced indel detection algorithm based on candidate alternate haplotype identification 

and read re-alignment. Both packages include call filtering on widely accepted metrics (e.g., 

base quality, mapping quality) and were run using recommended parameters (Supplementary 

Fig. 2).

SAMtools was able to detect nearly all (97.8%, 636/650) substitution variants present at 

MAF ≥ 20% (Supplementary Fig. 2a). Performance was substantially reduced at MAF 

below these levels, with only 25.1% (97/386) of variants present at 10% ≤ MAF ≤ 20% 

detected and no variants (0/1,021) at MAF < 10% being called. Dindel, on the other hand, 

detected 80% (217/272) of all indel events (Supplementary Fig. 2b). Of the variants missed, 

73% (40/55) were ≥23 bp. Indeed, no indels of >23 bp were called in any sample. All other 

missed variants had MAF <20% or occurred in regions of low mapping quality 

(Supplementary Table 8). Nearly all SAMtools calls (1,039/1,048) were also seen in our 

pipeline results, suggesting that SAMtools maintained tight specificity control, whereas 

Dindel calls outnumbered ours more than sevenfold (8,923 versus 1,154), highlighting that 

additional filtering is likely required.

Although these comparisons are necessarily imperfect, and additional differences in variant 

calling likely affect the results, these findings are consistent with the importance of somatic-

variant modeling to allow the detection of low-frequency alterations and the deep leveraging 

of information across multiple short reads by means of local assembly to allow detection of 

larger indel events.

CNA detection performance

We detected CNAs by fitting a statistical copy-number model to normalized coverage and 

allele frequencies at all exons and ~3,500 genome-wide, single-nucleotide polymorphisms 

(SNPs), accounting for stromal admixture35–37. To validate CNA detection, we pooled seven 

tumor cell lines bearing 19 focal gene amplifications (6–15 copies, 15 genes) and 9 

homozygous gene deletions (6 genes) with their matched normal cell lines (thereby 

maintaining consistent genotypes) in five ratios ranging from low to high tumor content (20–

75%), creating a total test set of 210 CNAs (Supplementary Table 9).

High performance was achieved for both high-level amplifications (copy number ≥ 8) and 

homozygous deletions when tumor purity was as low as 30%: sensitivity was 99% (91/92) 

with PPV > 99% (127/127) (Fig. 3 and Supplementary Table 10). Performance was reduced 

for lower CNAs (6–7 copies) and at lower sample purities (20–30%), with overall sensitivity 

>80%. Our results demonstrate that an optimized NGS-based test can accurately detect most 

clinically actionable CNAs in a broad spectrum of patient specimens. These results also 
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highlight the scope for further improvements in this methodology, including the robust 

detection of heterozygous loss.

Concordance between NGS and other test platforms

The above studies demonstrate that the NGS-based test has the performance characteristics 

necessary to accurately detect base substitutions, indels and CNAs. We further validated test 

accuracy by blinded comparisons to four alternative clinical diagnostic technologies for 249 

FFPE cancer specimens.

To assess base substitution and indel detection in routine clinical cancer samples, we 

selected 118 FFPE resection specimens (67 lung cancers, 31 colorectal cancers and 20 

melanoma) previously tested for 91 mutations in eight oncogenes using Sequenom mass 

spectrometry genotyping or a PCR fragment gel-sizing approach (Fig. 4b). For this study, 

DNA for NGS was extracted from 4 × 10 μm, new, unstained sections from the originally 

tested FFPE block. High concordance was noted across platforms; of the 101 mutations 

identified by Sequenom or gel sizing, 97 were also called by NGS (using an earlier version 

of the bait set targeting 182 genes; Supplementary Table 1b), and NGS found an additional 7 

mutations at mutually tested sites (Fig. 4a). Discordant samples did not have lower average 

coverage (857× versus 922× for concordant samples; t-test, P = 0.51, n =118), and did not 

otherwise differ in processing. Several discordances showed weak or equivocal evidence of 

mutation by Sequenom, indicating that high-uniform-coverage NGS may have even greater 

sensitivity, although tumor heterogeneity may have also contributed to the discordances 

observed (Supplementary Table 11). More than 25% of concordant calls had an MAF ≤ 

10%, emphasizing the high sensitivity needed in a clinical cancer genomic test (Fig. 4c).

Additional patient sample cohorts were assembled to assess the accuracy of CNA detection: 

72 breast cancer specimens tested clinically for ERRB2 amplification by FISH, 54 combined 

prostate and head & neck cancer specimens tested for PTEN loss by FISH or IHC, 34 head 

& neck cancer specimens tested for CCND1 amplification by IHC, and 25 prostate samples 

tested for amplification of AR by FISH. High concordance was again observed, with the 

accuracy of NGS ranging from 95–100% relative to other tests (Fig. 4d,e and Supplementary 

Table 12).

In total, these results demonstrate that the optimized NGS test can be as accurate as clinical 

assays currently in use; it also comprehensively assays a much larger series of clinically 

relevant cancer genes.

Mutation detection reproducibility in FFPE samples

In addition to establishing test analytical sensitivity, specificity and accuracy with respect to 

alternative technologies, we validated test reproducibility by comparing the equivalence of 

test results on separate aliquots of the same tumor DNA25.

We first evaluated reproducibility by testing six clinical FFPE specimens in five replicates, 

each on three different assay batches, including three replicates in a single batch. Taken 

together, these samples contained 35 known genomic alterations of all types, providing a 

diverse set of test variants for comprehensive assessment of both inter- and intrabatch 

Frampton et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reproducibility. Concordance between replicates was 97% (Supplementary Table 13), with 

no significant differences between inter- and intrabatch replicates observed. Most discordant 

calls could be ascribed to inconsistency in copy number assessment for a single low-purity 

specimen.

We further assessed long-term test reproducibility by examining mutation calls for two 

FFPE colon cancer resections that were repeatedly tested as regular process controls. Each 

of the two samples contained two or three known alterations (substitutions or indels) and 

each was sequenced repeatedly over 4–8 months (79 and 71 replicates, respectively). All 

alterations were successfully detected in all replicates, including one alteration occurring at a 

low (~4%) MAF. The quantitative nature of deep NGS was again highlighted, with MAFs of 

detected mutations showing stability even over this extended time period (Fig. 5).

Finally, we explored the potential impact of FFPE-related artifacts by comparing mutation 

calls in five pairs of matched normal FFPE and blood specimens derived from the same 

patient. If FFPE-related artifacts significantly affected the spectrum of called alterations, we 

would expect alterations called in FFPE normal specimens to be absent from the matching 

blood controls. Indeed, of the 13 alterations called in FFPE specimens, all were present in 

the corresponding blood sample (Supplementary Fig. 3), indicating that these were likely 

real (although rare, i.e., not in NCBI dbSNP) germline variation. In contrast, the number of 

sites with more than three observations of an alternate base (substitution call ‘candidates’, in 

our method) approximately doubled in FFPE samples to an average of 935, versus 485 (t-
test, P < 0.02), with most excess sites present at MAF < 5%. Although this sample set is too 

small to draw definitive conclusions, we surmise that any FFPE-related artifacts exist below 

the call thresholds of our test, an observation reinforced by the high concordance with the 

results of mass spectrometric genotyping reported above.

Taken together, these experiments demonstrate the robustness of the platform and offer 

confidence that the high performance characteristics of the test can be sustained over a long 

period.

Clinically actionable alterations in patients

Full clinical validation of comprehensive cancer genomic profiling in oncologic care, 

through demonstration of broadly improved outcomes, is an active area of investigation that 

will engage the research community for some time38. Nevertheless, our deployment of an 

analytically validated, comprehensive, NGS-based cancer gene test allows for several initial 

insights to be drawn, and points the way toward successfully incorporating NGS in clinical 

oncology and clinical trials.

We report our experience with 2,221 solid-tumor FFPE specimens (Fig. 6a) submitted to our 

CLIA-certified, CAP-accredited laboratory for comprehensive genomic profiling to inform 

clinical decision making for cancer patients worldwide. In total, 95.1% (2,112/2,221) of 

specimens were successfully tested (mean coverage 1,134×, Supplementary Table 14). 

Despite the diversity of tumor types assayed and concerns that the quality of sample DNA 

from tissues embedded in paraffin may degrade over time, the site of origin and specimen 

age had only a modest impact on assay performance (Supplementary Fig. 4). As expected, 
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larger specimens arising from tumor resections perform somewhat better than needle 

biopsies, and samples yielding abundant double-stranded DNA (dsDNA) outperformed those 

with more marginal DNA yields (Supplementary Fig. 4). Overall, clinical cancer specimens 

obtained in the course of routine care appear amenable to an optimized NGS-based 

diagnostic assay, highlighting the broad applicability of the approach.

Given that matched normal specimens are not routinely collected in clinical practice, 

reporting focused on known sites of somatic mutation39, truncations or homozygous 

deletions of known tumor suppressor genes40, as well as known amplifications of oncogenes 

and gene fusions in genes known to be rearranged in solid tumors. Alterations were reported 

in 174/189 (92%) of tested genes, with an average of 3.06 alterations per sample (range, 0–

23). When the focus was limited to alterations associated with a clinically available targeted 

treatment option or a mechanism-driven clinical trial (i.e., clinically actionable)26,41,42, the 

average number of alterations per sample was 1.57 (range, 0–16), with 76% of samples 

containing at least one such alteration, suggesting that clinical application of individual 

patient results is feasible.

Although the number of actionable alterations in any individual cancer patient’s sample was 

low (average, 1.57), a wide variety of alterations was observed across all samples, with 

1,579 unique alterations reported. Their frequency displayed a long-tail distribution, with a 

handful of common alterations in cancer complemented by many rarer events (Fig. 6b and 

Supplementary Table 15). It was thus not surprising to observe that current clinical testing 

paradigms comprising only mutation hotspots10,11,43 capture less than one-third of total 

actionable results (Fig. 6c).

The therapeutic implications of the long tail were particularly notable for proven targets of 

therapy, as exemplified by ERBB2. Although ERBB2 is currently clinically validated only 

as an amplified or overexpressed drug target in breast and gastro-esophageal cancer, we 

observed ERBB2 alterations in 12 additional solid tumor types (Fig. 6d), spanning most 

known sites of activation throughout the gene (Fig. 6e), and comprising 5% of total cases. 

Importantly, more than 40% of all ERBB2 alterations were point mutations or indels in 

nonamplified specimens that would have been negative by limited biomarker tests. Although 

robust clinical evidence for targeting these alterations must still be generated, recent 

preclinical work on their functional importance44 highlights the promise of improving 

cancer care through comprehensive genomic profiling using an optimized NGS diagnostic 

test.

DISCUSSION

Cancer treatment has entered a new age in which sophisticated diagnostics reveal the 

molecular drivers of individual patient tumors, offering the opportunity to select appropriate 

targeted therapy. However, as more clinically relevant cancer genes are identified, matching 

patients with the optimum targeted therapy becomes more challenging, particularly as 

routine clinical practice presents hurdles not typically encountered in the research setting. Of 

note, the majority of clinical specimens are FFPE, which can damage DNA and requires 

optimized methodologies to assay accurately. Biopsies of advanced disease, which is 
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associated with the greatest risk of morbidity, are becoming smaller, with needle biopsies 

common, necessitating the development of methodologies that can detect all classes of 

genomic alteration in a single, tissue-sparing test. Furthermore, the selection of tumors with 

the highest percentage of tumor nuclei, common practice in the research setting, is not a 

clinical option. In cancer specimens with a low percentage of tumor tissue (high levels of 

normal cell contamination), high test sensitivity is required. High specificity is also required 

as false-positive reports may lead to suboptimal therapy choice. Finally, the long tail of 

genomic alterations that are individually rare, but which cumulatively form a substantial 

fraction of clinically and biologically relevant genomic alterations, requires the interrogation 

of thousands of exons from hundreds of cancer-related genes to maximize targeted treatment 

options.

To overcome these challenges, we have developed an NGS-based diagnostic test to 

accurately detect all clinically relevant genomic alterations across all coding exons of 287 

cancer genes in routine FFPE clinical specimens, including needle biopsies. We validated 

this test by creating pooled cell-line models spanning key determinants of detection accuracy 

for somatic alterations, including MAF, indel length, degree of stromal admixture and 

amplitude of copy number change. We verified accuracy in FFPE specimens by examining 

concordance in tumors clinically characterized for selected mutations by current validated 

tests.

The overall performance of our test was high. In cell line models, sensitivity was >99% for 

base substitutions, 98% for indels and >95% for CNAs. False-negative calls were 

predominantly low MAF (<10%) substitutions and indels or low-magnitude (6,7) CNAs. 

Because it is impractical to independently confirm all alterations arising from a clinical NGS 

test, it was equally important that high specificity was maintained, with the PPV of alteration 

calls exceeding 99%. The raw read support for all variants is additionally subject to expert 

review in our clinical practice, to further guard against the potential for false-positive 

reports. Robust performance translated to FFPE specimens: concordance on mutually tested 

markers exceeded 95% for all alteration types compared to current clinical tests. 

Comprehensive NGS-based genomic profiling was successful for most (95.1%) of >2,200 

consecutive clinical cases, identifying more actionable alterations (in 76% of patients) than 

otherwise practical today.

We present a validation study and performance metrics for a comprehensive NGS-based 

diagnostic test for use in oncologic care. Given the capability of optimized NGS to detect a 

broader range of genomic alterations than current clinical assays, particularly when the 

amount of tissue is limited, we advocate that NGS-based genomic profiling be employed to 

maximize the appropriate use of targeted therapy, allow populations of patients with 

uncommon or rare alterations to be routinely identified for clinical trials and thus expand 

treatment choices for cancer patients.

METHODS

Methods and any associated references are available in the online version of the paper.
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ONLINE METHODS

NGS-based clinical cancer gene test

DNA extraction and library construction—A 4-μm section of a hematoxylin and 

eosin–stained slide was reviewed for pathology (J.R.) to ensure a sample volume of ≥1 mm3, 

nucleated cellularity ≥80% or ≥30,000 cells and that ≥20% of the nuclei in the sample were 

derived from the tumor. A macro-dissection to enrich specimens of ≤20% tumor content was 

performed when warranted. DNA was extracted from 40 μm of unstained FFPE sections, 

typically 4 × 10 μm sections, by digestion in a proteinase K buffer for 12–24 h followed by 

purification with the Promega Maxwell 16 Tissue LEV DNA kit. Double-stranded DNA is 

quantified by a Picogreen fluorescence assay using the provided lambda DNA standards 

(Invitrogen); UV-based quantification was found unreliable for FFPE samples. 50–200 ng of 

dsDNA in 50–100 μl water in microTUBEs is fragmented to ~200 bp by sonication (3 min, 

10% duty, intensity = 5, 200 cycles/burst; Covaris E210) before purification using a 1.8× 

volume of AMPure XP Beads (Agencourt). SPRI purification and subsequent library 

construction with the NEBNext kits (E6040S, NEB), containing mixes for end repair, dA 

addition and ligation, were performed in 96-well plates (Eppendorf) on a Bravo Benchbot 

(Agilent) using the “with-bead” protocol45 to maximize reproducibility and library yield. 

Indexed (6-bp barcodes) sequencing libraries are PCR amplified with HiFi (Kapa) for 10 

cycles, 1.8× SPRI purified and quantified by qPCR (Kapa SYBR Fast) and sized on a 

LabChip GX (Caliper); size selection was not done. PCR yield was maximized by ensuring 

that no SPRI beads were transferred to the PCR tube. Samples yielding <50 ng of extracted 

DNA or 500 ng of sequencing library, or with a mean insert size >400 bp, were failed; the 

failure rate was 4.9% on the first 2,221 consecutive clinical samples.

Hybrid selection and sequencing—Solution hybridization was done using a >50-fold 

molar excess of a pool of 23,685 individually synthesized 5′-biotinylated DNA 120 bp 

oligonucleotides (Integrated DNA Technology). The baits targeted ~1.5 Mb of the human 

genome including 4,557 exons of 287 cancer-related genes, 47 introns of 19 genes 

frequently re-arranged in cancer, plus 3,549 polymorphisms located throughout the genome 

(Supplementary Table 1a). Baits were designed by taking overlapping 120 bp DNA 

sequence intervals covering target exons (60 bp overlap) and introns (20 bp overlap), with a 

minimum of three baits per target; SNP targets were allocated one bait each. Intronic baits 

were filtered for repetitive elements46 as defined by the UCSC Genome RepeatMasker track. 

Hybrid selection of targets demonstrating reproducibly low coverage was boosted by 

increasing the number of baits for these targets. In an earlier version of the test, 

hybridization capture was done using RNA-based baits (Agilent SureSelect), targeting 3,230 

exons of 182 cancer genes and 37 introns of 14 genes frequently rearranged in cancer28–30 

(Supplementary Table 1b). The long-term reproducibility and clinical analyses includes data 

using this method, as do the Sequenom and FISH/IHC concordance studies (Supplementary 

Table 12). As described previously47, 500–2,000 ng of sequencing library is lyophilized in a 

96-well plate and suspended in water, heat denatured at 95 °C for 5 min and then incubated 

at 68 °C for 5 min before addition of the baitset reagent and Cot, salmon sperm and adaptor-

specific blocker DNA in hybridization buffer. After a 24-h incubation, the library-bait 

duplexes are captured on paramagnetic MyOne streptavidin beads (Invitrogen) and off-target 

Frampton et al. Page 11

Nat Biotechnol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



library is removed by washing once with 1× SSC at 25 °C and four times with 0.25× SSC at 

55 °C. The PCR master mix is added to directly amplify (12 cycles) the captured library 

from the washed beads45. After amplification, the samples are 1.8× SPRI purified, quantified 

by qPCR (Kapa) and sized on a LabChip GX (Caliper). Libraries are normalized to 1.05 nM 

and pooled such that each Illumina HiSeq 2000 lane has up to four samples each (32 per 

flowcell), before 49 × 49 paired-end sequencing using manufacturer’s protocols.

Sequence data processing—Sequence data were mapped to the human genome (hg19) 

using BWA aligner v0.5.9 (ref. 48). PCR duplicate read removal and sequence metric 

collection was done using Picard 1.47 (http://picard.sourceforge.net/) and Samtools 

0.1.12a33. Local alignment optimization was performed using GATK 1.0.4705 (ref. 49). 

Variant calling was done only in genomic regions targeted by the test.

Base substitution detection—We used a Bayesian methodology, which allows 

detection of novel somatic mutations at low MAF and increased sensitivity for mutations at 

hotspot sites through the incorporation of tissue-specific prior expectations39. Reads with 

mapping quality <25 are discarded, as are base calls with quality ≤2. The equations 

governing this evaluation are:

P(Mutation present| Read data “R”) = P(Frequency of mutation “F” > 0|R) = 1 – P(F = 0|R)

P(F = 0) = 1 – prior expectation “p” of the mutation in cancer type

P(R|F = i/n) is evaluated with a multinomial distribution of the observed allele counts at each 

candidate mutation site, using empirically observed error rates. Call candidates are issued if 

P(“F” >0|R) > 99%. Final calls are made at MAF ≥ 5% (MAF ≥ 1% at hotspots) after 

filtering for strand bias (Fisher’s test, P < 1e-6), read location bias (Kolmogorov–Smirnov 

test, P < 1e-6), and presence in two or more normal controls.

Indel detection—To detect indels, de novo local assembly in each targeted exon was 

performed using the de Bruijn approach50. Key steps are:

1. Collecting all read-pairs for which at least one read maps to the target region.

2. Decomposing each read into constituent k-mers and constructing an enumerable 

graph representation (de Bruijn) of all candidate nonreference haplotypes 

present.

3. Evaluating the support of each alternate haplotype with respect to the raw read 

data to generate mutational candidates. All reads are compared to each of the 
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candidate haplotypes through ungapped alignment, and a ‘vote’ for each read is 

assigned to the candidate with best match. Ties between candidates are resolved 

by splitting the read vote, weighted by the number of reads already supporting 

each haplotype. This process is iterated until a ‘winning’ haplotype is selected.

4. Aligning candidates against the reference genome to report mutation calls. Indel 

candidates arising from direct read alignment were also considered.

Filtering of indel candidates was carried out as described for base substitutions above (strand 

bias P < 1e-10, MAF ≥ 3% at hotspots), with an empirically increased MAF threshold at 

repeats and adjacent sequence quality metrics as implemented in GATK: percentage of 

neighboring base mismatches <25%, average neighboring base quality >25, average number 

of supporting read mismatches ≤2.

CNA detection—Using a comparative genomic hybridization (CGH)-like method, we 

obtained a log-ratio profile of the sample by normalizing the sequence coverage obtained at 

all exons and ~3,500 genome-wide SNPs against a process-matched normal control. This 

profile was corrected for GC-bias, segmented and interpreted using allele frequencies of 

sequenced SNPs to estimate tumor purity and copy number at each segment. Briefly, if Si is 

a genomic segment at constant copy number in the tumor, let li be the length of Si, rij be the 

coverage measurement of exon j within Si, and fik be the minor allele frequency of SNP k 
within Si. We estimate p, tumor purity, and Ci, the copy numbers of Si. We jointly model rij 

and fik, given p and Ci:

and,

where Mi is the copy number of minor alleles at Si, distributed as integer 0 ≤ Mi ≤ Ci. σri and 

σfi reflect noise observed in the CGH and SNP data, respectively. Fitting was performed 

using Gibbs sampling, assigning absolute copy number to all segments. Model quality was 

reviewed and alternative explanations considered36, and focal amplifications are called at 

segments with ≥6 copies (or ≥7 for triploid; ≥8 for tetraploid tumors) and homozygous 

deletions at 0 copies, in samples with purity >20%.

Gene fusion detection—Genomic rearrangements were identified by analyzing chimeric 

read pairs (read pairs for which reads map to separate chromosomes, or at a distance of over 

10 Mbp). Pairs were clustered by genomic coordinate of the pairs, and clusters containing at 

least 10 chimeric pairs were identified as rearrangement candidates. Filtering of candidates 

was performed by mapping quality (MQ > 30) and distribution of alignment positions (s.d. 

>10). Rearrangements were annotated for predicted function (creation of fusion gene or 

tumor suppressor inactivation).
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Analytical validation

Cell line specimens—For base substitution validation, purified DNA from 20 

lymphoblastoid cell lines (Supplementary Table 2) from the 1000 Genomes Project were 

purchased from the Coriell Institute (http://ccr.coriell.org/). For indel validation, 28 

immortalized tumor cell lines (Supplementary Table 5) were purchased from ATCC (http://

www.atcc.org/). Purified gDNA was available for five tumor cell lines (A2058, DU-145, 

HCC1395, HCC1937, THP-1), whereas frozen cell pellets were used for the other 23. For 

copy number validation, seven pairs of matched tumor and normal cell lines were purchased 

from ATCC as either cell pellets or DNA (Supplementary Table 9). Cell pellets were thawed 

on ice and washed twice with PBS before cell lysis and DNA purification. Pool constituents 

were mixed in equals part using a Biomek NX (Beckman Coulter) to a total mass of 200 ng. 

Actual mixing ratios were calculated using a linear regression of SNP alternate allele 

frequencies. All sequence data generated for cell lines and pools have been deposited at 

NCBI Sequence Read Archive (SRA) under accession SRP028580.

FFPE tumor specimens—For concordance analyses, FFPE specimens and confirmatory 

assay results were obtained as detailed in Supplementary Table 12 and outlined below. 

Sequenom mass-spec genotyping: tumors were genotyped using the MassArray system 

(Sequenom). Samples were tested in duplicate using a series of multiplexed assays designed 

to interrogate AKT1 (codon 17), BRAF (codons 469, 594, 600), EGFR (codons 709, 719, 

761, 768, 776, 790, 858, 861), ERBB2 (codons 755, 769, 777), KRAS (codons 12-13, 61, 

117, 146), MAP2K1 (codons 56, 57, 67), NRAS (codons 12-13, 61) and PIK3CA (codons 

88, 345, 420, 542, 545, 1043, 1047). Genomic DNA amplification and single base pair 

extension steps were conducted with primers designed using Assay Designer v3.1 

(Sequenom). The allele-specific extension products were analyzed using MALDI-TOF/MS. 

Automated calls were confirmed by manual review of spectra.

EGFR exon 19 gel sizing: 200 ng of DNA was PCR amplified with FAM-labeled EGFR 

exon 19 specific primers (EGFR-Ex19-FWD1: 5′GCACCATCTCACAATTGCCAGTTA3′, 

EGFR-Ex19-REV1: 5′ Fam AAAAGGTGGGCCTGAGGTTCA3′). The resulting PCR 

product was checked by agarose gel electrophoresis, analyzed using a 3730XL instrument 

and Prism Software (Applied Biosystems). The size of the wild-type-labeled product is 207 

bp, whereas mutated EGFR exon 19 appears as smaller sizes.

AR/PTEN FISH—These specimens have been described previously28. FFPE 0.4-μm tissue 

sections were hybridized with probes for PTEN+ reference probe (10q25.2) and separately 

with probes for Androgen Receptor (AR)+ and the centromeric region of the X chromosome 

(CEPX). For each case, at least 30 nonoverlapping nuclei were evaluated for PTEN deletion 

or AR amplification using a BX51 Olympus microscope based on the copy number of each 

probe, as well as the PTEN:10q25.2 and AR:CEPX ratios. Where NGS results were 

available for multiple specimens per patient, the highest purity specimen was used in 

concordance analysis (no within-patient discordances were noted).

ERBB2 FISH—5 μm tissue sections or core biopsies of invasive breast carcinomas were 

hybridized with probes for ERBB2 and the centromeric region of chromosome 17 (CEP17) 
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that are components of the PathVysion HER2 FISH assay (Abbott-Vysis). Hybridized slides 

were digitally imaged and 20 nonoverlapping cells were evaluated for ERBB2 and CEP17 

copy number using the Ikonscope HER2 Analysis Software. ERBB2 copy number, CEP17 

copy number and ERBB2:CEP17 ratio were calculated and reported according to the 

package insert.

PTEN and CCND1 IHC—IHC was carried out using established methods51,52. Antibody 

04-409 (Millipore-Merck KGaA) was used for PTEN staining, and antibody P2D11F11 

(Novocastra) was used for CCND1 staining of 10-μm thick slides.

All confirmatory assays were performed on FFPE tissue. All NGS analyses were performed 

on FFPE tissue, except in study B, where tissue was preserved in RNAlater.

Assessment of base substitution detection performance—To determine the 

variants present in normal cell lines used for assessment of base substitution detection, all 20 

HapMap DNA samples were sequenced individually. The 5,801 SNP sites from the dbSNP53 

database (build 135) that overlap test gene coding regions (marked coding-synonymous, 

missense, or nonsense) were examined. SNP sites consistent with a homozygous (MAF > 

90%) or heterozygous (40% ≤ MAF ≤ 60%) state were used in the test set. The expected 

MAF for each test base substitution in pooled samples was calculated based on the number 

of alternate alleles present in mix constituents and on mixing ratios (Supplementary Tables 

2–4).

Assessment of indel detection performance—The test set of indels was generated 

from indels in cell lines in the COSMIC database (http://cancer.sanger.ac.uk/cancergenome/

projects/cosmic/) occurring in the coding regions of test genes. The expected MAFs for 

indels in pooled samples were calculated based on the MAF of that indel in the individual 

tumor cell line, the ploidy of that locus in each of the pool constituents and on mixing ratios 

(Supplementary Tables 5 and 7).

Assessment of CNA detection performance—A total of 11 known CNAs occurring 

within 7 tumor cell lines were identified in the CGP database (http://www.sanger.ac.uk/cgi-

bin/genetics/CGP/cghviewer/CghHome.cgi) and confirmed to exist in the pure tumor cell 

lines. An additional 17 CNAs were discovered de novo in the pure tumor cell lines and 

added to the test set. Tumor and normal cell line pairs were combined to generate pools of 

75%, 50%, 40%, 30%, 20% tumor fraction for each pair, and pools were sequenced and 

analyzed individually (Supplementary Tables 9 and 10).

Calculation of performance statistics—For sensitivity analysis, all test variants were 

assigned either a true positive (TP) if detected in the pool or false negative (FN) if not 

detected. Sensitivity was calculated as TP/(TP+FN). For specificity analysis, each called 

variant was classified as a TP if a matching alteration was detected in the pure sample, or as 

a false positive (FP) if a matching alteration was not detected. PPV was calculated as TP/(TP 

+ FP).
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Figure 1. 
NGS-based cancer genomic profiling test workflow. (a) DNA is extracted from routine 

FFPE biopsy or surgical specimens. (b) 50–200 ng of DNA undergoes whole-genome 

shotgun library construction and hybridization-based capture of 4,557 exons of 287 cancer-

related genes and 47 introns of 19 genes frequently rearranged in solid tumors. Hybrid-

capture libraries are sequenced to high depth using the Illumina HiSeq2000 platform. (c) 

Sequence data are processed using a customized analysis pipeline designed to accurately 

detect multiple classes of genomic alterations: base substitutions, short insertions/deletions, 

copy-number alterations and selected gene fusions. (d) Detected mutations are annotated 

according to clinical significance and reported.
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Figure 2. 
Base substitution and indel detection performance. (Base substitutions given in panels a–c, 

indels in panels d–f.) (a) Expected allele frequencies of base substitution alterations within 

the test set. (b) Detection sensitivity as a function of sample median exon coverage. Error 

bars, s.e.m. (c) Allele frequencies measured in pooled samples (y axis) match the 

frequencies expected based on the genotypes and mixing ratios of constituent cell lines (x 
axis). (d) Expected allele frequencies of indel alterations within the test set. (e) Detection 

sensitivity as a function of sample median exon coverage. Error bars, s.e.m. (f) Allele 
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frequencies measured in pooled samples (y axis) match the frequencies expected based on 

the genotypes, ploidy and mixing ratios of constituent cell lines (x axis).
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Figure 3. 
CNA detection performance. (a) Example of CNA data. HCC2218 cell line mixed with 

matched normal sample at 100% (a), 50% (b) and 20% tumor content (c). Y axes denote 

log-ratio measurements of coverage obtained in test samples versus a normal reference 

sample, with assessed copy numbers marked by dashed lines. Each point denotes a genomic 

region measured by the assay (blue exon, cyan SNP), and these are ordered by genomic 

position. Red lines indicate average log-ratio in a segment, whereas green lines illustrate the 

model prediction. Asterisks denote the detected CDH1 homozygous deletion (chr16) and 

ERBB2 amplification (chr17). (d) Summary of sensitivity results of CNA calling validation 

study for focal amplifications and homozygous deletions in samples with tumor fractions 

≥30% and 20–30%. Error bars, s.e.m.
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Figure 4. 
Concordance with clinical testing on FFPE specimens. Tumor specimens (N = 249) were 

assayed using the NGS-based test and by several other methods. (a) Overlap between 

positive alteration calls by NGS and Sequenom or gel sizing at 91 mutually tested sites in 

118 FFPE clinical cancer specimens. (b) Specific alterations comprising the 97 concordant 

calls. (c) Histogram of NGS MAF in the 97 concordant calls. The high prevalence of low 

MAF in clinical cancer specimens is highlighted. (d) Examples of confirmation of NGS 

CNAs by IHC. (e) Summary of concordance between NGS, FISH and IHC findings across 

four genes (Supplementary Table 12).
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Figure 5. 
Reproducibility of mutation detection in FFPE specimens. Two large colon cancer resections 

were repeatedly tested in separate process batches. DNA was first extracted from all of the 

tissue in each FFPE block in several batches, pooled, and then used to make 200 ng aliquots. 

The reproducibility of mutation detection and measured MAF were examined. The MAF 

measured for the known somatic alterations in these samples is shown, with samples ordered 

left to right from earliest to latest. (a) One specimen was tested 79 times between November 

9, 2011 and June 17, 2012. Three known somatic mutations (COSMIC) were detected in this 

sample: APC c.4394-4395insAG p.S1465fs*9, KRAS c.35G>A p.G12D, and PTEN c.

235G>A p.A79T. Each of these mutations was successfully detected in 79/79 tests. (b) A 

second specimen was tested 71 times between July 12, 2012 and October 21, 2012. Two 

known somatic mutations were detected in this sample: APC c.694C>T p.R232* and KRAS 
c.35G>T p.G12V. Each of these mutations was successfully detected in 71/71 tests.

Frampton et al. Page 24

Nat Biotechnol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Clinically actionable alterations in patient samples. (a) Distribution of tumor tissue of origin 

(type) for profiled specimens. (b) Frequency of all reported alterations in most commonly 

altered genes among the specimens. Alterations are colored according to alteration class, as 

depicted in panel c. Error bars, s.e.m. (c) Distribution of clinically actionable alteration 

classes detected. (d) Frequency of ERBB2 alterations detected among specimens of various 

tumor types. Alterations are colored according to class, as in panel c. Error bars, s.e.m. (e) 

Distribution of substitution and indel mutations, across the domain structure of the ERBB2 

protein. Individual mutations are represented as triangles colored according to the tumor 

type.
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