For localized information and support, would you like to switch to your country-specific website for {0}?
v-TAC Standalone software

Calculating Arterial Blood Gas values using venous blood samples
v-TAC Standalone is an in vitro diagnostic medical device software that offers an alternative to the conventional Arterial Blood Gas (ABG) testing, which is well known for being painful for the patients and complex to perform.
The v-TAC software is intended to automatically calculate ABG values based on peripheral venous blood gas measurements and an arterial oxygen saturation (SpO2) value measured by pulse oximetry.
The v-TAC software arterializes peripheral venous blood gas values by mathematically adding O2 and removing CO2 using advanced physiological acid-base and oxygenation models until the calculated oxygen saturation equals the arterial oxygenation (SpO2) measured by pulse oximetry.
Operating with v-TAC in daily clinical practice is simple due to the seamless integration of the software with existing blood gas analyzers. No interaction with the software is needed.
v-TAC software has been validated in several studies, and results suggest it may help replace arterial blood gas testing.1

Simplifying arterial blood gas testing
The v-TAC Standalone software calculates arterial blood gas values from peripheral venous blood, reducing the complexity and making blood gas testing work more efficient. Watch to discover how!
Related products

Watch the ASPIRE webinar: Using physiology-based mathematical models to calculate arterial blood gas values from venous blood
Professor Rees from the Respiratory and Critical Care group (R-Care) Department of Health Sciences and Technology in Aalborg University, Denmark, explains the limitations of venous blood gas testing and introduces v-TAC—an alternative to get Arterial Blood Gas estimates without the need of performing arterial punctures in patients.
*Before using v-TAC please consult the v-TAC Standalone 1.5 User Guide for complete information.
References:
- Shastri L et al. (2024). Expert Rev Respir Med 18(7):553-559. doi: 10.1080/17476348.2024.2378021.
- Ekström M et al. (2019). PLoS ONE 14(4): e0215413. doi:10.1371/journal.pone.0215413
- Kamperidis P et al. (2018). BMJ Thorax 73:A250. doi:10.1136/thorax-2018-212555.429
- Rees SE et al. (2012). Clin Chem Lab Med 50(12): 2149-2154. doi:10.1515/cclm-2012-0233
- Low LL et al. (1995). Chest 108: 216-219. doi:10.1378/chest.108.1.216
- Perme C et al. (2013). Cardiopulm Phys Ther J 24(2): 12-17. doi:10.1097/01823246-201324020-00003
- Davies M et al. (2023). BMJ Open Respir Res 10:e001537. doi:10.1136/bmjresp-2022-001537
- Weber M, Cave G. (2021). BMJ Open Resp Res 8: e000896. doi:10.1136/ bmjresp-2021-000896
- Schütz N et al.(2019) Open Access Emerg 11: 305–312. doi:10.2147/OAEM.S228420
- F. Hoffmann-La Roche Ltd. v-TAC Standalone software version 1.5 User Guide
- Toftegaard M et al. (2009). Emerg Med J 26: 268-272. doi:10.1136/emj.2007.052571
- Mallat J et al. (2015). Medicine 94(3): e415 doi:10.1097/MD.0000000000000415
- Daher A et al. (2022). Respiration. doi:10.1159/000524491